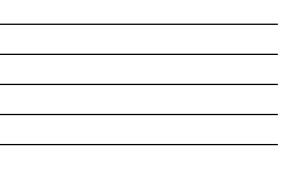
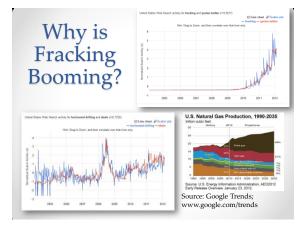

Hydraulic Fracturing "Fracking"

Geologic Considerations and Questions That Need Answers

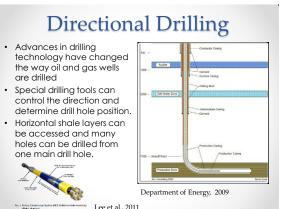
Dr. Peter J. Wampler wamplerp@gvsu.edu

Natural Gas Sources


What is Fracking? (unconventional gas recovery)


- Enhanced oil and gas recovery through hydraulic fracturing of methane-bearing shale (and other rock types).
- Shale has low permeability so fluids and gasses have a difficult time moving toward oil and gas wells.
- Hydraulic fracturing increases the permeability though creating, and maintaining, a network of fractures.

Shale and Fracking Shale at the surface is often very fractured but at depth (1000's of feet) there Water + Proppan Chemicals + Press are few open fractures. Proppant (spherical grains


Photo of Marcellus Shale on the surface

Fracking Issues

- Micro-earthquakes and stability
- Groundwater contamination
 Methane contamination, "Flaming" tap water, and potential explosions
 Contamination from toxic additives
- Surface water contamination
 - o Dewatering of saline aquifers to the surface
 - Contamination from additives
- Increased dependence on fossil fuels ("bridge fuel")
 Greenhouse gas emissions

Micro-earthquakes and stability

- Fracking is mostly applied to deep shale
 Range is broad but from 2,000-10,000 feet
 - Most drinking water aquifers are < 500 feet. One of the most productive in Michigan (Marshal Sandstone) is only 120 feet deep below GVSU campus
- Can fracking cause earthquakes?
 - Likely yes, although size of quakes and risk of any damage is probably very small.
 - Evidence from wells in Oklahoma suggests that earthquakes initiation can be very sporadic and changes with time (Holland, 2011)
- Can fracking cause subsidence or instability?
 Likely not much. Volume changes are probably not significant enough to cause surface changes.

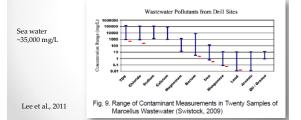

Groundwater contamination

		Table 2. States wit	h the Highest Volume of
	Hydraulic Fracturing Fluids Containing		
Table 1. Chemical Components Appearing Mo	2-Butoxyethanol (2005-2009)		
Hydraulic Fracturing Products Used Between 20	05 and 2009		
	No. of		Fluid Volume
	Products	State	(gallons)
	Containing	Texas	12,031,734
Chemical Component	Chemical	Oklahoma	2.186.613
Methanol (Methyl alcohol)	342	New Mexico	1.871.501
Isopropanol (Isopropyl alcohol, Propan-2-ol)	274	Colorado	
Crystalline silica - quartz (SiO2)	207		1,147,614
Ethylene glycol monobutyl ether (2-butoxyethanol)	126	Louisiana	890,068
Ethylene glycol (1,2-ethanediol)	119	Pennsylvania	747,416
Hydrotreated light petroleum distillates	89	West Virginia	464,231
Sodium hydroxide (Caustic soda)	80	Utah	382,874
		Montana	362,497
		Arkansas	348,959

Source: U.S. House of Representatives, 2011

Surface water contamination

 Formation water from deep shale formations is typically saline and may contain contaminants (As, Pb, Fe, etc.)

Conclusions

Questions that need answers

- Seismic
 Methane and other potential contaminants in surface water and drinking water wells
- Accountability
 Oil companies sh

MARS • Monitoring

- Oil companies should bear the cost and responsibility to demonstrate that fracking is safe and sustainable
- Reporting
 - All fluids and additives used.
 - Fluid and additive recovery data.
 - Formation water discharge quality and quantity.
- Support for research and information dissemination
 - Royalty or tax to support research

References

Cathles, L. M., Brown, L., Toam, M., Hunter, A., (2012) A commentary on "the greenhouse-gas footprint of natural gas in shale formations" by R.W. Howarth, R. Santoro, and Anthony Ingraffea. Climatic Change, 1–11. URL http://dx.doi.org/10.1007/s10584-011-0333-0.

- Antropy Ingraftee L Limatic Change, 1–11. UK. http://ac.doi.org/10.100/s10584-011 Holland, Auttin (2011) Examination of Possibly Induced Settienicity from Hydraulic Fracturing in Report OF1:2011.
 Howarth R, Sontzor T, and Ingraftea A (2011) Methane and the greenhouse gas footprint of natural gas from shale formations. Clinical Change, edi:10.100/s10584-011-0061-5. http://www.spingerlink.content/0.834226wr4160533/
 Howarth R, Mingraftea A (2011) Should fractics stop? Fes. It is to o high risk. Nature 477:271-lev Das. Herman J.D., Bawoth D., Kim H.T., and Lee H.S. (2011) A critical evaluation of unconventional gas recovery from the marcellus shale, notheastern united states. KSCE Journal of Civil Engineering. 15(4):679-687
 US. Department of Energy Office of Fossil Energy National Energy Technology Laboratory (2009) State Oil And Natural Gas Regulations Designed To Protect Water Resources. 65

- Department of Energy Office of fossil Energy National Energy Technology Laboratory (2009) Modem Shale Gas Development in the United States: A Primer. 116 p.
 U.S. House of Representatives Committee on Energy and Commerce Minority staff (2011). Chemicads Used In Hydraulic Fracturing. 32 p.